PROJECT SYNOPSIS

Located on the western boundary of Savannah’s historic city center, the Evans Center for African American Studies at the Savannah College of Art and Design expands the university art museum by resurrecting the ruins of the nation’s only surviving antebellum railroad complex. A primary goal of this expansion was to accommodate the museum’s centerpiece: the renowned Walter O. Evans Collection of African American Art.

Once part of the Underground Railroad, the Evans Center now celebrates African American works collected and commissioned by a native son, a man who once embarked upon a life of military and medical service from the very place that now bears his name.

The Evans Center transformed the dilapidated freight warehouses to the west of SCAD’s Kiah Hall, a Greek Revival structure and National Historic Landmark that was once home to the headquarters of the Central of Georgia Railway. Originally constructed in 1853 by African slaves shouldeing handcrafted Savannah gray bricks, the complex served as a Union stronghold during the Civil War, and in the early 20th century, it formed the heart of Savannah’s thriving African American commercial district. Yet by the turn of the 21st century, beset by five decades of neglect, the passenger and freight depot lay in ruins.

The greatest challenge in designing the Evans Center was to preserve and incorporate as much of the site’s original structure and materials as possible, while balancing demands of safety, efficiency, and authenticity. The team aimed to reclaim all materials on-site, to build sustainably, and to serve the unique environmental needs of a museum. The design process emphasized an artistically manual approach, evolving through drawings and watercolors that honor the integrity and humanity of the site’s heritage.

With its galleries, art studios, classrooms, 250-seat theatre, public gardens, exterior jewel box enclosures, and vibrant streetscape, the museum’s expanded footprint intentionally links the site’s historical and geographic context with its contemporary purpose. Ultimately, the Evans Center stands as an enduring monument to intellectual exchange, artistic discovery, adaptive reuse, and urban evolution.
1. CONTEXT

The Solution must be CIVIC
IV. FORM

The contemporary architectural expression of the new structure will relate to the form of a neoclassical予以republican that was restored in the eighteenth century by architect Pierre Charles L'Enfant.

The facade is conceived as a linear sequence of geometries that unfold as the new building and the main entrance. The facade is punctuated by a single vertical element marking the main entrance of the Museum.
The Solution must be **Memorable**

The architectural philosophy of the intervention is guided by the principle of **CONTRAST** at all scales, presenting the poetics beauty of the industrial ruin, while developing a strong architectural language rooted in simplicity and clarity.

The museum represents an opportunity to create a historic civic landmark for the City of Savannah and the International Art community.
The design of the Evans Center was guided by a principle of contrast at all scales, preserving the poetic beauty of the industrial ruin, while articulating a distinctly contemporary architectural language rooted in simplicity and clarity. Drawing inspiration from architectural precedents such as the Temple of Antoninus and Faustina in the Roman Forum, in which a 17th century Baroque church merges with the portico of a second century Roman temple, standing ruins were thoughtfully integrated, presenting a striking contrast while employing a scored concrete “sleeve” to strengthen structural support.

The linear format of the Evans Center’s architectural program engages an 800-foot block along Turner Boulevard, punctuated by a single vertical element marking the building’s entrance at the intersection of Turner Boulevard and Papy Streets. This semi-transparent glass tower, or lantern, divides the long fronting street into two pedestrian-scaled segments, creating an orienting landmark within a district dominated by horizontality. Frameless glass enclosures at each historic arch transform the north-facing sidewalk into the Evans Center’s most public gallery, lending human scale and rhythm to the urban environment.

On the south face of the museum, a linear courtyard provides a key connection between Savannah’s west boundary and the central National Historic Landmark District. This courtyard mirrors Savannah’s distinctive public squares and provides the university with a signature campus green.

Ultimately, the museum’s design fosters a dialogue between art and architecture, interior and landscape, preservation and urbanism. At the convergence of such crucial questions, the viewer takes part in a conversation three centuries in the making.
TECHNICAL ADVANCEMENT

The Evans Center's design employs a unique synthesis of high- and low-technology strategies that align with the building's design philosophy and with the university's mission.

Throughout the building, salvaged materials are juxtaposed with timeless, durable surfaces and textures, such as brick, concrete and cast glass. The result is a structure designed to last centuries rather than decades, a first principle of genuine sustainability.

The Evans Center also makes broad use of recent technologies, including a high thermal performance building envelope utilizing an insulated concrete form wall system erected behind masonry ruins. The ICF wall provides support for the historic masonry through a matrix of helical ties driven through mortar joints into the new wall. This system provides lateral support for the masonry wall, bringing it up to current seismic requirements. Above this assembly, insulated precast concrete wall panels emerge, and both wall systems leverage thermal mass assemblies to reduce loads for cooling and heating.

The building's distinctive lantern features the first-ever horizontal installation of channel glass that meets Miami-Dade County hurricane requirements. The channel glass’s structural cross-section provides greater strength without requiring intermediate structural elements that would interfere with the horizontal coursing of the historic brick walls. Additionally, high performance, low emissivity glass with high visible light transmittance is employed on the largely transparent south elevation, screened with an elegantly crafted system of wood louvers calibrated to shade the south-facing glazing while maintaining transparency to allow clear views of the new courtyard.

Site-design strategies detailed further in the sustainability chapter of this submittal provide stable and sustainable systems for storm water management and the long-term, efficient maintenance of plants and trees. Along the building’s streetscape, aerated root paths were installed into the sub-surface to promote a canopy of Cathedral Live Oaks. All planting beds, lawns, tree wells, and planters are irrigated with a centrally controlled watering system featuring individual zones calibrated to the plant species and solar orientation.
When the project broke ground in 2009, the site’s surrounding freight warehouse walls were in an advanced state of active deterioration. The original roof had collapsed, sections of the perimeter walls were reduced to piles of bricks, and the sidewalk along the primary fronting street was overgrown with weeds and fenced off from pedestrian traffic. From the outset of the project, the façade remained a focal point, and the team vowed early on that not a single fallen brick would leave the site.

The completed Evans Center recasts standing ruins as exterior walls, recycles masonry for sidewalk pavement and courtyard surfaces, and reclaims timber from fallen trusses as interior finishes.

Original heart-pine timbers and a surplus of 70,000 original Savannah gray bricks provide historic detailing on exterior facades and throughout the interior and landscape areas, carrying on the aesthetic and tradition of the former freight warehouses.

As well, salvaged bricks have been used as infill or to replace failed brick units within the original structure, thus eliminating the need to fabricate, transport and import new brick units.

Repair and replacement of the historic mortar was made possible through the creation of new lime putty that was laboratory-matched to samples of the 19th-century mortar. Inside the museum, brick is adjoined to new concrete with stainless steel Spira-Lok ties fitted on an 18-inch grid, and a two-inch cavity wall allows for moisture release.

The conservation of original masonry walls on the north and south elevations has aided in the natural holding of thermal mass, thereby reducing interior heat and cold buildup. Thermal mass allowances provide for higher E-values of exterior walls, and contribute to reduced needs for cooling and heating.

Retention of a majority of original high ceilings allows for the natural circulation of hot air, a crucial factor in Savannah’s near-tropic climate. In addition, the preservation of the original space configuration and ceiling height tells a living story of the building’s former use, and adds dramatically to the display and experience of art.
SUSTAINABILITY

The adaptive re-use of an historic structure for a new purpose is in itself the earliest and most organic form of sustainable design. Throughout the construction of the Evans Center, the design team sought to extend the project’s inherently sustainable elements wherever possible.

WATER

Prior to the redevelopment of the property, there were no provisions for treatment of storm water. The site was highly compacted and no conveyance system was in place. To address the issue, a 20,684-cubic-foot underground storm water detention system was installed on site to regulate discharge associated with the 2-, 5-, 10-, 25- and 100-year, 24-hour design storms at predevelopment rates. The chamber was designed to suspend sediment and debris, allowing water to stage to defined levels before flowing through to an outlet control structure. This storm water detention system provides an 80% mean reduction in total suspended solids, 49% mean reduction in total phosphorus, and a 90% mean reduction in total petroleum hydrocarbons.

As well, the conversion of the museum’s courtyard from gravel parking to a pedestrian green space improves the quality of site runoff, and low flow plumbing fixtures are used throughout the building.

LIGHTING

High efficiency lighting and daylight harvesting contribute to energy efficiency throughout the Evans Center. All lighting in classrooms is fluorescent, motion sensors and control system optimize energy savings, exterior street and courtyard lighting and recessed down lights in public areas feature LED lamps, and glass display ‘jewel boxes’ on the street façade feature metal halide flood lights.

Natural daylight in the academic corridor spine is plentiful, and classroom entry nodes are illuminated by five clerestory monitors, recalling the original lantern skylights in the historic depot. The channel glass-clad tower element floods the lobby with natural light during daylight hours, and at night the tower is up lit with LED flood lights, initiated by photocell with exterior lighting.

Original roof overhang details of the covered platform walkways on the southern elevation of the building provide natural shading in the enclosed linear Pamela Poetter Gallery. Here, high-performance, low-emissivity glass with high visible light transmittance and elegant wood louvers are carefully calibrated to completely shade the Poetter Gallery for minimal UV and heat gain.

HEATING & COOLING

Alongside precast exterior wall panels exposed to view above the historic masonry, the ICF wall system creates a continuous weather barrier without the use of bituminous or other membrane systems. Both wall systems leverage thermal mass assemblies with continuous insulation, optimizing performance in this cooling dominated climate.

The high-albeds white roof membrane fully adhered to an insulating concrete deck reduces the urban heat island effect and provides thermal envelope continuity with the wall system.

Cooling is served by an efficient air-cooled chiller (IPLV 13.30 EER). Summer dehumidification, winter humidification, and fresh air requirements for the critical environmental requirements of gallery spaces are managed through a centralized energy recovery unit that exchanges conditioning between outgoing exhaust air and incoming fresh air. Decoupling the humidity control system from the temperature control systems allows it to operate more efficiently by tasking the cooling system only with cooling recirculated air.

Management of cooling and heating is zoned for specialized uses, so gallery, theater or classroom climate needs are individually calibrated and monitored. The museum’s signature channel glass tower is conditioned to human comfort only at occupied levels. Relief ventilation is provided through a stack effect at the top of the tower. Glass systems throughout the building were carefully chosen and specified to minimize UV in sensitive areas, provide day lighting where aligned with building functions, and deliver optimal U-values.
LANDSCAPE & SITE DESIGN

Sited on the boundary of a walkable city center, the Evans Center extends Savannah’s pedestrian-oriented character into a formerly disinvested district. The entry plaza provides a dedicated area for campus and tour bus drop off, as well as extensive bicycle parking at key site entry points. No new parking was provided, as the facility has ready access to public and campus mass transit, as well as public parking. By tying into existing public parking facilities, the design team freed horizontal spaces for a landscaped courtyard.

The courtyard, created in the old rail yard between the museum and adjacent rail shed, which was previously repurposed as SCAD’s building arts academic center, is a new pedestrian-only green space reminiscent of the historic district’s famous squares.

Landscape planning for the courtyard makes use of contemporary sustainable design through specialized zeroscape planning and elements such as porous paving materials that help reduce heat-island effects and allow for the run-off and natural absorption of rainfall.

Landscape irrigation water-use reduction has also been achieved through the planting of compatible species of plants. Excess run-off water is directed to retention tanks and will be used for irrigation purposes.

The Evans Center’s WalkScore rating is 82 (Very Walkable).

METRICS

Neither Energy Star Target Finder nor Architecture 2030 Challenge offer clear benchmarking precedence for this facility. However, through analyzing 12 months of actual energy consumption and cost data, we have projected an annual total energy consumption for the facility at 92 kBtu/sf/yr. Comparing this performance to the closest types of facilities in the two databases results in the following energy consumption reductions:

Energy Star – Assuming Retail parameters for gallery space and K-12 parameters for academic space, the SCAD Museum of Art energy rating is 70. Using these benchmarks without adjustments, performance rating is 23% better than the average. Adjustments taking into account the museum’s 72 degrees + 2 degrees temperature and 50% + 5% humidity control (for Retail) and extended hours (for K-12) would result in an even higher score.

Architecture 2030 Challenge – Assuming Average Site EUI for College / University (campus level) of 120 kBtu/sf/yr, the SCAD Museum of Art total of 92 kBtu/sf/yr is 24% better than the average. Appropriate consideration of the building’s museum-standard temperature and humidity control and exhibit lighting would result in an even higher rating.
CONCLUSION

Like the grand depot at its turn-of-the-century prime, the Evans Center for African-American Studies at the SCAD Museum of Art was envisioned as a civic landmark, articulating an optimistic perspective on the convergence of old and new, the past and the future. With the debut of the Evans Center, this site has returned full circle, reinvigorated as a hub of scholarship, collaboration, and imagination through the enduring power of architecture.